PRÁCTICA 6

NÚMEROS COMPLEJOS Y POLINOMIOS

DEFINICIONES Y PROPIEDADES

NÚMEROS COMPLEJOS

El conjunto \mathbb{C} de los *números complejos* es:

$$\mathbb{C} = \{ z = a + bi / a, b \in \mathbb{R} ; i^2 = -1 \}$$

Si $z \in \mathbb{C}$, la representación a + bi se llama forma binómica de z.

La *parte real* de *z* es *a*:

La *parte imaginaria* de *z* es *b*:

 $\operatorname{Im} z = b$.

Si
$$z, w \in \mathbb{C}$$

$$z = w \iff \operatorname{Re} z = \operatorname{Re} w = \operatorname{Im} z = \operatorname{Im} w$$

Sean z = a + bi y w = c + di dos números complejos;

la suma es

$$z + w = (a+c) + (b+d)i$$

el producto es

$$z w = (ac - bd) + (ad + bc)i$$

La suma es asociativa y conmutativa; el producto es asociativo y conmutativo y vale la propiedad distributiva respecto de la suma.

Notación:

$$a + (-b)i = a - bi \qquad a + 0i = a$$

$$a + 0i = a$$

$$0 + bi = bi$$

Si $z \in \mathbb{C}$, z = a + bi, llamaremos *conjugado* de z a $\overline{z} = a - bi$

y llamaremos *módulo de z* al número real no negativo $|z| = \sqrt{a^2 + b^2}$

Observaciones _

$$1) \left| z \right|^2 = z \, \overline{z}$$

1)
$$|z|^2 = z \overline{z}$$
 2) Si $z \neq 0$, $z^{-1} = \frac{\overline{z}}{|z|^2}$

Propiedades:

C1)
$$\overline{\overline{z}} = z$$

M1)
$$z = 0 \iff |z| = 0$$

C2)
$$\overline{z+w} = \overline{z} + \overline{w}$$

$$\mathbf{M2)} \ |z w| = |z||w|$$

C3)
$$\overline{zw} = \overline{z} \, \overline{w}$$

$$M3) |z| = |\overline{z}|$$

C4) Si
$$z \neq 0$$
, $\overline{z^{-1}} = (\overline{z})^{-1}$

$$\mathbf{M4)} \ |z| = |-z|$$

C5)
$$z + \overline{z} = 2 \operatorname{Re} z$$

M5) Si
$$z \neq 0 \implies |z^{-1}| = |z|^{-1}$$

C6)
$$z - \overline{z} = 2(\operatorname{Im} z)i$$

M6) Si
$$w \neq 0 \implies \left| \frac{z}{w} \right| = \frac{|z|}{|w|}$$

Si $z \in \mathbb{C}$, z = a + bi, $z \neq 0$, llamaremos argumento de z al único número real arg z tal

que
$$0 \le \arg z < 2\pi$$
; $\cos \arg z = \frac{a}{|z|}$; $\operatorname{sen} \arg z = \frac{b}{|z|}$

Si $z \in \mathbb{C}$, la forma trigonométrica de z es $z = |z| (\cos \arg z + i \sin \arg z)$

Si $z = \rho(\cos \alpha + i \sin \alpha)$ y $w = \tau(\cos \beta + i \sin \beta)$, $\cos \rho$, $\tau > 0$, $\alpha, \beta \in \mathbb{R}$, entonces $z = w \iff \rho = \tau(\text{es decir } |z| = |w|)$ y $\alpha = \beta + 2k\pi$ para algún $k \in \mathbb{Z}$.

Teorema de De Moivre. Sean $z, w \in \mathbb{C}, z \neq 0, w \neq 0$.

Si $z = |z|(\cos \alpha + i \sin \alpha)$ y $w = |w|(\cos \beta + i \sin \beta)$ entonces

$$z w = |z||w|(\cos(\alpha + \beta) + i \sin(\alpha + \beta))$$

Corolario.

$$z^{-1} = |z|^{-1} (\cos(-\alpha) + i \sin(-\alpha))$$

$$\overline{z} = |z| \cdot (\cos(-\alpha) + i \sin(-\alpha))$$

$$\frac{z}{w} = \frac{|z|}{|w|} (\cos(\alpha - \beta) + i \sin(\alpha - \beta))$$

$$z^{n} = |z|^{n} (\cos(n\alpha) + i \sin(n\alpha)) \qquad n \in \mathbb{Z}$$

Si $w \in \mathbb{C}$, $w \neq 0$, una *raíz n-ésima* de w es un número $z \in \mathbb{C}$ tal que $z^n = w$.

Propiedad. Si z es una raíz n-ésima de w entonces:

$$z = |w|^{1/n} \left(\cos \frac{\arg w + 2k\pi}{n} + i \operatorname{sen} \frac{\arg w + 2k\pi}{n}\right)$$

para algún entero k tal que $0 \le k \le n - 1$.

Si $z \in \mathbb{C}$, $z = |z|(\cos \alpha + i \sin \alpha)$, la notación exponencial de z es $z = |z|e^{i\alpha}$

Propiedades. Si $\alpha, \beta \in \mathbb{R}$

$$\overline{e^{i\alpha}} = e^{\overline{i\alpha}} = e^{-i\alpha}$$

$$e^{i\alpha}e^{i\beta} = e^{i(\alpha+\beta)}$$

POLINOMIOS

En lo que sigue \mathbb{K} significa \mathbb{Q} , \mathbb{R} ó \mathbb{C} .

Un polinomio con coeficientes en K es una expresión de la forma

$$P(x) = a_0 x^0 + a_1 x^1 + ... + a_n x^n = \sum_{i=0}^n a_i x^i \text{ con } n \in \mathbb{N}_0 \text{ y } a_i \in \mathbb{K}.$$

Indicamos $\mathbb{K}[X] = \{ P / P \text{ es polinomio con coeficientes en } \mathbb{K} \}$, y consideramos en $\mathbb{K}[X]$ las operaciones de suma y producto usuales.

Grado de P: Si
$$P \neq 0$$
, $P(x) = a_0 x^0 + a_1 x^1 + ... + a_n x^n$ y $a_n \neq 0$, definimos grado de $P = \text{gr } P = n$

El polinomio nulo no tiene grado.

Valen las siguientes propiedades: si $P \neq 0$, $Q \neq 0$,

$$gr(P Q) = gr P + gr Q$$

$$gr(P+Q) \le max\{ gr P, gr Q \}$$

$$(si P + Q \neq 0)$$

Dados $P \in \mathbb{K}[X]$, $P(x) = \sum_{j=0}^{n} a_j x^j$ y $z \in \mathbb{K}$, llamamos especialización de P en z al

número

$$P(z) = \sum_{j=0}^{n} a_j z^j$$

Sea $P \in \mathbb{K}[X]$, $z \in \mathbb{K}$. Diremos que z es raíz de P si P(z) = 0.

Algoritmo de división.

Dados $P, Q \in \mathbb{K}[X], Q \neq 0$, existen únicos $S, R \in \mathbb{K}[X]$ tales que:

$$P = Q S + R$$
 con $R = 0$ ó gr $R < \text{gr} Q$

Se dice que Q divide a P (o que P es divisible por Q) y se nota $Q \mid P$, si el resto de la división de P por Q es el polinomio nulo, esto es, si P = Q S con $S \in \mathbb{K}[X]$.

Teorema del Resto.

Si $P \in \mathbb{K}[X]$ y $z \in \mathbb{K}$, el resto de la división de P por (x-z) es igual a P(z).

Corolario. Sea $P \in \mathbb{K}[X]$ y $z \in \mathbb{K}$; z es raíz de P si y sólo si $(x - z) \mid P$.

Teorema.

Si
$$P \in \mathbb{K}[X]$$
 y $a_1, a_2, ..., a_r \in \mathbb{K}$ son raíces de $P \operatorname{con} a_i \neq a_j$ si $i \neq j$, entonces $P(x) = (x - a_1)(x - a_2)...(x - a_r) Q(x) \operatorname{con} Q \in \mathbb{K}[X]$.

Corolario. Si *P* es un polinomio de grado *n* entonces *P* tiene a lo sumo *n* raíces.

Teorema de Gauss.

Sea $P \in \mathbb{Z}[X]$, $P(x) = \sum_{i=0}^{n} a_{j} x^{j}$ con $a_{0} \neq 0$. Si $\frac{p}{q}$ (con $p \in \mathbb{Z}$, $q \in \mathbb{N}$ y (p, q) = 1) es una raíz de P, entonces $p \mid a_0 \text{ y } q \mid a_n$.

Teorema fundamental del álgebra.

Si $P \in \mathbb{C}[X]$ y gr $P \ge 1$, existe $z \in \mathbb{C}$ tal que z es raíz de P.

Teorema.

Sea $P \in \mathbb{R}[X]$, y sea $z \in \mathbb{C}$. Si z es raíz de $P \Rightarrow \overline{z}$ es raíz de P.

Si
$$P(x) = \sum_{j=0}^{n} a_j x^j \in \mathbb{K}[X]$$
, llamaremos polinomio derivado de P a:
$$\partial P(x) = \sum_{j=1}^{n} j a_j x^{j-1} = \sum_{j=0}^{n-1} (j+1) a_{j+1} x^j$$

Propiedades.

$$\partial(P+Q) = \partial P + \partial Q$$
 $\partial(P\cdot Q) = (\partial P)\cdot Q + P\cdot \partial Q$ $\partial(kx^0) = 0$

Notación: Designamos $\partial^{(m)}P = \partial(\partial^{(m-1)}P) = \partial(\partial(...(\partial P)))$

Si $P \in \mathbb{K}[X]$, diremos que $z \in \mathbb{C}$ es raíz de multiplicidad k de $P(k \in \mathbb{N})$ si $P(x) = (x - z)^k Q(x) \quad \text{con } Q \in \mathbb{C}[X] \text{ y } Q(z) \neq 0.$

Teorema.

Sea $P \in \mathbb{R}[X]$, y sea $z \in \mathbb{C}$; z es raíz de multiplicidad k de P si y sólo si $P(z) = \partial P(z) = \partial^2 P(z) = \dots = \partial^{(k-1)} P(z) = 0 \text{ y } \partial^{(k)} P(z) \neq 0.$

Polinomio interpolador de Lagrange

Sean $a_0, a_1, ..., a_n$, $a_i \in \mathbb{K}$, $a_i \neq a_j$ si $i \neq j$, y sean $b_0, b_1, ..., b_n$ arbitrarios, $b_i \in \mathbb{K}$. Existe un único polinomio $L \in \mathbb{K}[X]$, con L = 0 ó gr $L \leq n$, que satisface $L(a_i) = b_i$ para i = 0, 1, ..., n. Se trata del polinomio:

$$L(x) = \sum_{i=0}^{n} b_i L_i(x) \quad \text{donde} \quad L_i(x) = \frac{\prod_{k=0}^{n} (x - a_k)}{\prod_{\substack{k=0 \ k \neq i}}^{n} (a_i - a_k)}$$

81

EJERCICIOS

NÚMEROS COMPLEJOS

Ejercicio 1.- Dar la forma binómica de *z*.

a)
$$z = (3-i) + (\frac{1}{5} + 5i)$$

b)
$$z = (\sqrt{2} + i)(\sqrt{3} - i)$$

a)
$$z = (3-i) + (\frac{1}{5} + 5i)$$
 b) $z = (\sqrt{2} + i)(\sqrt{3} - i)$ c) $z = (3 + \frac{1}{3}i)(3 - \frac{1}{3}i) + (3 + 2i)$

Ejercicio 2.- Dar la forma binómica de *z*.

a)
$$z = (1+2i)(1-2i)^{-1}$$

b)
$$z = (1+i)(2+3i)(\overline{3+2i})$$

c)
$$z = (1+i)^{-1}(\sqrt{2}+\sqrt{2}i)+(-2+5i)$$

Ejercicio 3.- Calcular |z|.

a)
$$z = (\sqrt{2} + i) + (3\sqrt{2} - 3i)$$

b)
$$z = (1+ai)(1-ai)^{-1}$$
 $a \in \mathbb{R}$

c)
$$z = (3i)^{-1}$$

d)
$$z = ||1 - i| + i| + i$$

e)
$$z = (1+i)(1-2i)(3-i)$$

f)
$$z = 3(1+3i)^1$$

Ejercicio 4.- Dar la forma binómica de \overline{z} .

a)
$$z = |1-i|+i$$

b)
$$z = ||1+i|+i|+i$$

c)
$$z = (1-2i)(2-i)$$

d)
$$z = (1+3i)(1-3i)$$

Ejercicio 5.- Representar en el plano todos los $z \in \mathbb{C}$ tales que:

a)
$$|z| = 3$$

b)
$$|z| \le 2$$

c)
$$z = \overline{z}$$

Ejercicio 6.-

- a) Representar en el plano el conjunto $B = \{z \in \mathbb{C} / |z+1-i| \le 2\}$.
- b) Representar en el plano el conjunto B = $\{z \in \mathbb{C} / |z+1| \le |z-3-i|\}$.
- c) Si A = $\{z \in \mathbb{C} / \text{Re } z \le 1, \text{ Im } z \le \frac{1}{2}\}\ \text{y B} = \{z \in \mathbb{C} / |z 1 3i| = 5\}\$, representar $C = A \cap B$.

Ejercicio 7.- Escribir en forma binómica todos los $z \in \mathbb{C}$ tales que:

a)
$$z^2 = 1 - 4\sqrt{3}i$$

b)
$$z^2 = 16 + 14\sqrt{3}i$$

c)
$$z^2 + 2z + 3 = 0$$

d)
$$z^2 = 5 - 2i z$$

Ejercicio 8.- Hallar todos los $z \in \mathbb{C}$ tales que su conjugado coincide con su cuadrado.

Ejercicio 9.- Calcular Re z e Im z.

a)
$$z = 2(\cos \pi + i \sin \pi)$$

b)
$$z = 3(\cos\frac{3}{2}\pi + i\sin\frac{3}{2}\pi)$$

c)
$$z = (\cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi)$$

d)
$$z = 2(\cos{\frac{7}{4}}\pi + i\sin{\frac{7}{4}}\pi)$$

Ejercicio 10.- Escribir *z* en forma trigonométrica.

a)
$$z = \sqrt{5}$$

b)
$$z = -6$$

c)
$$z = 15i$$

d)
$$z = -\frac{1}{3}i$$

e)
$$z = \sqrt{5} + \sqrt{5}i$$

f)
$$z = 3 - \sqrt{3}i$$

$$g) z = -3(\cos 0 + i \sin 0)$$

h)
$$z = 3(\cos\frac{\pi}{2} - i \sin\frac{\pi}{2})$$

i)
$$z = 2(\cos\frac{\pi}{3} + i\cos\frac{\pi}{3})$$

$$j) z = \frac{\pi}{2}i(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$$

Ejercicio 11.- Representar en el plano.

a)
$$A = \{z \in \mathbb{C} / \arg z = 0\}$$

b) B =
$$\{z \in \mathbb{C} / \frac{1}{2}\pi \le \arg z \le \frac{5}{4}\pi \}$$

c)
$$C = \{z \in \mathbb{C} / |z| = 5, 0 \le \arg z \le \frac{2}{3}\pi \}$$

c)
$$C = \{z \in \mathbb{C} / | z | = 5, \ 0 \le \arg z \le \frac{2}{3}\pi\}$$
 d) $C = \{z \in \mathbb{C} / | z + 1 - i | \le 3, \ \frac{\pi}{6} \le \arg z \le \frac{\pi}{3}\}$
Ejercicio 12.-

Ejercicio 12.-

- a) Escribir en forma trigonométrica $z = (1+i)(\frac{\sqrt{3}}{2} \frac{1}{2}i)$
- b) Escribir en forma binómica $z = (-3\sqrt{3} + 3i)^{15}$
- c) Escribir en forma binómica $z = \frac{1+i}{(-\sqrt{3}+i)^5}$

Ejercicio 13.- Encontrar todas las raíces *n*-ésimas de *w* para:

a)
$$n = 3$$
 $w = 1$

b)
$$n = 5$$

Ejercicio 14.- Determinar todos los $z \in \mathbb{C}$ tales que $z^8 = \frac{1-i}{\sqrt{2}+i}$

Ejercicio 15.- Encontrar todos los $z \in \mathbb{C}$ que satisfacen:

a)
$$z^3 = i \overline{z}^2$$

b)
$$z^{10} = -4\overline{z}^{10}$$

c)
$$z^5 - \overline{z} = 0$$

d)
$$z^4 + z^{-4} = 0$$

e)
$$z^3 + 9i \overline{z}^2 |z| = 0$$

d)
$$z^4 + z^{-4} = 0$$
 e) $z^3 + 9i\overline{z}^2 |z| = 0$ f) $z^4 = (\frac{3}{2} - i\frac{\sqrt{3}}{2})^8$

Ejercicio 16.-

- a) Escribir en forma binómica $e^{i\pi}$, $e^{i\frac{\pi}{3}}$, $2e^{-i\pi}$, $e^{i\frac{5}{6}\pi}$.
- b) Expresar en forma exponencial las raíces quintas de −1.
- c) Probar que $\forall t \in \mathbb{R}$ es $\cos t = \frac{e^{it} + e^{-it}}{2}$ y $\sin t = \frac{e^{it} e^{-it}}{2i}$

POLINOMIOS

Ejercicio 17.- Calcular PQ, 3P + Q y $P^2 - Q$ e indicar el grado de cada uno.

a)
$$P(x) = 2x + 1$$

a)
$$P(x) = 2x + 1$$
 $Q(x) = x^2 + 3x - 2$

b)
$$P(x) = 3x^2 + x - 1$$
 $Q(x) = -9x^2 - 3x + 6$

$$O(x) = -9x^2 - 3x + 6$$

c)
$$P(x) = x^3 - 3$$

c)
$$P(x) = x^3 - 3$$
 $Q(x) = -x^3 + 2x^2 + 1$

Ejercicio 18.- Encontrar, si existen, a, b y c en \mathbb{R} tales que:

a)
$$3x - 2 = a(x^2 + x + 3) + b(x^2 - 2x + 1) + c(x^2 - 3)$$

b)
$$(2x-1)(x+1) = ax^2 + b(x+1)(x+3)$$

Ejercicio 19.- a) Determinar $a \in \mathbb{R}$ tal que:

i) Si
$$P(x) = ax^3 - 3ax^2 + 2$$
, sea $P(2) = 3$

sea
$$P(2) = 3$$

ii) Si
$$P(x) = x^3 + 3x^2 + a$$

ii) Si $P(x) = x^3 + 3x^2 + a$, P tenga a cero como raíz

iii) Si
$$P(x) = ax^2 + ax + 3$$
, sea $P(-1) = 3$ y gr $P = 2$

$$sea P(-1) = 3 y gr P = 2$$

- b) Determinar $a, b \ y \ c \ \text{en } \mathbb{R}$ para que:
- i) $P(x) = ax^2 + bx + c$ tenga a 1 y -1 por raíces

ii)
$$P(x) = x^2 + 2bx + a$$
 y $Q(x) = ax^3 - b$ tengan a 2 como raíz común.

Ejercicio 20.- Determinar todas las raíces de *P*.

a)
$$P(x) = x^2 + ix + 1$$

b)
$$P(x) = x^2 + (1 - i)x + 1$$

c)
$$P(x) = x^2 + 2x + 1$$

$$d) P(x) = ix^5 - 1$$

Ejercicio 21.- Hallar todas las raíces de *P*.

a)
$$P(x) = 3x^3 + x^2 + 12x + 4$$

b)
$$P(x) = \frac{1}{3}x^3 + 2x^2 + \frac{2}{3}x - 7$$

c)
$$P(x) = x^4 + 2x^3 - 9x^2 - 18x$$

d)
$$P(x) = x^4 - x^3 - 9x^2 - x - 10$$
 sabiendo que *i* es raíz

e) $P(x) = x^5 - 25x^3 + 85x^2 - 106x + 45$ sabiendo que (2 + i) es raíz

f)
$$P(x) = x^4 - \frac{9}{4}x^2 - \frac{9}{4}$$

g)
$$P(x) = x^6 - 2x^4 - 51x^2 - 108$$
 sabiendo que $P(-\sqrt{3}i) = 0$

Ejercicio 22.- Dado $P(x) = 2x^4 - 6x^3 + 7x^2 + ax + a$, determinar $a \in \mathbb{R}$ sabiendo que (1+i) es raíz de P y hallar las restantes raíces de P.

Ejercicio 23.- Escribir $x^4 + 1$ como producto de polinomios irreducibles en $\mathbb{C}[X]$ y en $\mathbb{R}[X]$.

Ejercicio 24.- Determinar la multiplicidad de α como raíz de P.

a)
$$P(x) = (x^2 - 1)(x - 1)^3(x^5 - 1)$$

$$\alpha = 1$$

b)
$$P(x) = x^4 + 3x^3 + 12x^2$$

$$\alpha = 0$$

c)
$$P(x) = x^3 - x^2 - 5x + 6$$

$$\alpha = 2$$

d)
$$P(x) = (x^4 + 1)(x^2 + 1)(x^3 + i)$$

$$\alpha = i$$

Ejercicio 25.- Hallar todas las raíces del polinomio P y escribirlo como producto de polinomios de grado 1.

a) $P(x) = x^5 - 6x^4 + 10x^3 + 4x^2 - 24x + 16$, y se sabe que *P* tiene una raíz triple.

b)
$$P(x) = 4x^3 + 8\sqrt{3}x^2 + 15x + 3\sqrt{3}$$
, y se sabe que P tiene una raíz doble.

Ejercicio 26.-

- a) Hallar $P \in \mathbb{R}[X]$, de grado mínimo, que tenga a 1/2 como raíz simple, a (1+i) como raíz doble y que verifique que P(0) = -2.
- b) Hallar todos los polinomios P con coeficientes reales, de grado 3, que tengan a (-2)como raíz doble y que verifiquen P(1) = P(-1).

Ejercicio 27.- Sabiendo que $Q(x) = 81x^4 - 1$ y $P(x) = 9x^4 + 27x^3 - 8x^2 + 3x - 1$ tienen alguna raíz común, encontrar todas las raíces de P.

Ejercicio 28.- Sea $P(x) = 2x^3 - 5x^2 + 4x + 1$, y sean a, b y c sus raíces.

Calcular:

$$a+b+c$$
 abc $a^2+b^2+c^2$

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

Ejercicio 29.- Calcular la suma y el producto de las raíces séptimas de la unidad.

Ejercicio 30.-

a) Sea
$$P(x) = 3x^3 - 2x^2 + x + \alpha$$
.

Encontrar $\alpha \in \mathbb{R}$ para que la suma de dos de las raíces de P sea igual a -1.

b) Sea
$$P(x) = x^3 + 2x^2 - 7x + \alpha$$
.

Encontrar $\alpha \in \mathbb{R}$ de manera que una de las raíces de P sea igual a la opuesta de otra.

c)
$$P(x) = 3x^3 + x^2 - 2x + \alpha$$
.

Encontrar $\alpha \in \mathbb{R}$ tal que una de las raíces de *P* sea igual a la suma de las otras dos.

Ejercicio 31.-

a) Encontrar un polinomio *P*, de grado a lo sumo 3, que satisfaga:

$$P(1) = 1$$
 ; $P(0) = -1$; $P(2) = 2$; $P(-1) = 0$

b) Encontrar la ecuación de una parábola que pase por P₁, P₂ y P₃, donde

$$P_1 = (-1,1)$$
 ; $P_2 = (0,1)$; $P_3 = (2,-2)$

c) Encontrar un polinomio de grado 4 que satisfaga:

$$P(-1) = -1$$
 ; $P(0) = 1$; $P(1) = 4$

EJERCICIOS SURTIDOS

1. Hallar todos los $z \in \mathbb{C}$ tales que:

a)
$$z^3 = 3iz\overline{z}$$

b)
$$(1+\sqrt{3}i)z^3=2\overline{z}$$

2. Sea
$$z \in \mathbb{C}$$
, $z \neq 1$, tal que $|z| = 1$. Calcular $\operatorname{Im}(i\frac{1+z}{1-z})$.

3. Hallar un polinomio $P \in \mathbb{R}[X]$, de grado mínimo, que verifique:

$$P(1+i) = 0$$
; -1 es raíz doble de P ; $Im(P(i)) = 28$

- **4.** Sea $P(x) = (x^3 ax^2 a^2x + 1)(x^2 a^2)$. Hallar *a* para que -1 sea raíz doble de *P*.
- **5.** Sean $P(x) = x^4 + x^3 7x^2 8x 8$ y $Q(x) = x^3 1$. Se sabe que P y Q tienen al menos una raíz común. Hallar todas las raíces de P en \mathbb{C} .
- **6.** Hallar un polinomio $P \in \mathbb{R}[X]$, de grado mínimo, que verifique simultáneamente: las soluciones de $z^2 = 5\overline{z}$ son raíces de P; P tiene alguna raíz doble; P(1) = 31.
- 7. Encontrar todas las raíces de $P(x) = x^5 + x^4 + x^3 + 2x^2 12x 8$, sabiendo que tiene alguna raíz imaginaria pura.

- **8.** a) Hallar todas las raíces sextas de (1 + i)
- b) ¿Existe una raíz sexta de (1+i) cuyo conjugado sea también raíz sexta de (1+i)?
- c) Hallar el producto de todas las raíces sextas de 1 + i.
- **9.** a) Hallar el resto de la división de P por (x-3)(x+2), si P(3)=1 y P(-2)=3
- b) Calcular el resto de la división de $P(x) = x^n 2x^{n-1} + 2$ por $x^2 + x$.
- c) Los restos de dividir a P(x) por (x+2), (x-3) y (x+1) son 3, 7 y 13 respectivamente. Calcular el resto de la división de P(x) por (x+2)(x-3)(x+1)
- d) Calcular el resto de la división de $P(x) = (\cos a + x \sin a)^n \text{ por } x^2 + 1$.
- **10.** Sea $P \in \mathbb{R}[X]$ y $Q(x) = x^3 2x^2 + x$. Hallar el resto de la división de P por Q sabiendo que P(0) = -1; P(1) = 3; $\partial P(1) = -3$.
- **11.** Encontrar todos los $z \in \mathbb{C}$ tales que $z^7 \overline{z}^3 = -2^{10}i$.
- **12.** Hallar z_1 y z_2 tales que ambos sean soluciones de $(1-i)z^2 = (2+2i)\overline{z}$ y que además verifiquen Re $(z_1) < 0$; Im $(z_1 \cdot \overline{z_2}) > 0$.
- 13. Encontrar un polinomio $P \in \mathbb{R}[X]$ de grado mínimo que tenga por raíces a las $(2 \operatorname{Im} z - i \operatorname{Re} z)^2 = -5 + 12i$. soluciones de la ecuación
- **14.** Hallar un polinomio $P \in \mathbb{R}[X]$ de grado 4, que cumpla las siguientes condiciones:
- i) el coeficiente principal de P es igual a 6
- ii) -1-i es raíz de P
- iii) el cociente entre dos de sus raíces reales es igual a 4 iv) P(0)=192
- **15.** Graficar los $z \in \mathbb{C}$ tales que $z^4 = (\overline{z})^4$ y $|\operatorname{Re}(z)| < 1$.
- **16.** Hallar todos los $z \in \mathbb{C}$ tales que $z^6 = i(\overline{z})^{-4}$ e $\text{Im}(z^3) < 0$.
- 17. Hallar un polinomio $P \in \mathbb{R}[X]$, de grado mínimo, que tenga por raíces a todas las soluciones de la ecuación $z^4 \overline{z} = 2i|z|^4$.
- **18.** Hallar todas las raíces de $P(x) = x^4 4x^3 + 3x^2 + 8x 10$ sabiendo que la suma de sus raíces reales es igual a cero.
- 19. Se sabe que el polinomio $P(x) = x^4 2x^3 + 2x^2 8x 8$ tiene alguna raíz imaginaria pura. Hallar todas las raíces de P y escribir P como producto de polinomios de grado 1.